Ali Erturk – Acute Brain Injury
A fundamental challenge in modern science is to understand how the brain functions in health and what goes wrong in the disease state. We develop and implement 3D imaging technologies to be able to generate the highest resolution views of intact rodent organs and bodies. We developed DISCO line tissues transparency technologies, which have been a great utility for scientists from diverse bio-medical research fields. Overall, this approach provides a holistic view of inter connected biological systems to perceive biological mechanisms in an unbiased way.
Our laboratory is interested in understanding key mechanisms leading to neurodegeneration after acute brain injuries, mainly stroke and dementia. To this quest, we take a multidisciplinary approach by using advanced neuroscience imaging, genetic engineering, nanotechnology and artificial intelligence.
While many diseases affect the entire body, research is usually conducted on the tissue of interest ignoring 99% rest of the organism. My lab believes that we need to see organism as a whole to correctly assess all biological systems affecting each other. Therefore, we use a holistic approach in research to overcome potential bias and discover essential cellular and molecular mechanisms in toto. Towards this goal, we have developed cutting-edge tissue transparency methods allowing 3D histology on intact organisms. We can now collect information on whole organism at the sub-cellular levels without sectioning. Obtained imaged data for example can for the first-time present the complete neuronal connectivity at single neuronal level, and determine what goes wrong in a neurological disease. We use machine-learning based image analysis methods to analyze these large imaging data. Finally, we are focusing on developing nanotechnology (nano-robots) to treat neurological diseases in a novel and potent way.
https://www.erturk-lab.com/
Ali Erturk, Principal investigator
I studied genetic engineering and molecular biology. My research has mainly focused on mechanisms of neurodegenerative diseases and developing new imaging tools to decipher details of complex biological systems in the whole organism.
Science has advanced enormously in the recent decades, however, we still lack effective treatments for devastating diseases such as stroke and dementia, partly due to incremental progress, where the majority of scientific effort focuses on the next “predicted” mechanisms. I believe a multi-disciplinary approach combining the expertise of diverse fields such as advance imaging, genetic engineering, nanotechnology and artificial intelligence will be a key to obtain “unbiased” readouts on biological systems and come up with breakthrough solutions to cure all diseases including the aging in the next a few decades.
We are an organism of interconnected systems from head-to-toe, via for example wiring of neurons and vessels. Thus, it is natural that most of the biological events will impact the whole-body, not only a small region. However, there is hardly any effort to study biological systems as a whole in research, also due to lack of methods that can provide readouts in the whole body at the cellular and molecular level. Towards this goal, we develop and use whole mouse transparency technologies (e.g., Ertürk et al., 2012 Nature Medicine, Pan et al., 2016 Nature Methods), enabling us to have a holistic view on cellular and molecular mechanisms in health and disease. For example, we study the effects of acute brain injuries not only in the brain but also throughout the whole nervous system and the body. We are also focusing on artificial intelligence to analyze the large data sets and nanorobots to discover new ways of drug delivery into the brain.
Personal data, Born: Sep. 1980
Website: www.erturk-lab.com email: erturk@deeppiction.com
Twitter: erturklab (67.8K followers) LinkedIn: LinkedIn
Current positions
09/2022-current: CEO, founder, 1X1 Biotech
02/2022-current: CEO, founder, Deep Piction
07/2022–current: W3 (Full) Professor, LMU Munich, Germany
07/2019–current: Director, Institute for Tissue Engineering & Regenerative Medicine, Helmholtz Munich
Research interests
• Aim: Developing and combining unbiased & scalable technologies for better diagnostics and therapeutics
• Focus: Tissue clearing, Spatial-omics, Imaging, Organoids, Neurodegeneration, Cancer, Nanotechnology, Delivery
Education and training (details in appendix 1)
2009–2014: Postdoctoral fellow at Genentech Inc., South San Francisco
2003–2009: Doctoral thesis at Max–Planck–Institute of Neurobiology, Munich
1998–2003: Bachelor of Science, Bilkent University, Molecular Biology and Genetics, Ankara
Honors & Awards
• 2021 Nomis Foundation Human Heart Atlas Award
• 2021 Scientific vision highlighted in Brandeins article
• 2020 Vision on extending human life highlighted by Focus Magazine
• 2020 Rolf Becker-Preis 2020
• 2020 Scientific and personal career profiled in Nature Methods
• 2020 ERC Consolidator Grant, European Research Council
• 2020 Cure Alzheimer’s Foundation researcher
• 2020 Media coverage by Reuters, NZZ, Telegram, Daily Mail, RTL, Focus, Sat1 and Süddeutsche Zeitung, Galileo
• 2019 Interviewed as one of the 7 scientists in “Brain gain in Germany…” by Focus Magazine
• 2017 NIH R01 grant award
• 2017 Adjunct Professor at the Rochester University (New York)
• 2017 Fritz Thyssen Stiftung Investigator Award
• 2016 Interviewed by New York Times and Wall Street Journal
• 2014 Sofja Kovalevskaja Award from Humboldt Foundation (declined)
• 2014 Associate Investigator of DFG Excellent cluster of Munich SyNergy and SyNergy II
Publications as PI/corresponding author
• Bhatia...Ertürk A. Spatial proteomics in optically cleared pre-clinical & clinical specimens, Cell (in press) (cover)
• Cai M…Ertürk A. Cellular level whole mouse imaging with vDISCO…Nat. Protocols (in press)
• Kolobas I…Ertürk A. Multi-omics and 3D-imaging reveal bone heterogeneity…(bioRxiv)
• Mai…Ertürk A. Scalable SHANEL Tissue Labelling and Clearing…Nat. Protocols (Oct 2022)
• Todorov M…Ertürk A. Machine learning analysis of whole mouse brain vasculature. Nature Methods, Apr. 2020
• Zhao S…Ertürk A. Cellular and Molecular Probing of Intact Human Organs. Cell, Feb. 2020 (video)
• Pan C…Ertürk A. Deep learning reveals cancer metastasis & therapeutic antibody… Cell, Dec. 2019 (cover) (video)
• Cai R…Ertürk A. Panoptic imaging of transparent mice reveals… Nature Neuroscience, Feb. 2019 (cover)
• Pan C…Ertürk A. Shrinkage-mediated imaging of entire organs by uDISCO. Nature Methods, Oct. 2016 (cover)
Average impact factor of all articles as PI > 44
2023
2022
2020
2019
2017
2016
2014